Compressive tibiofemoral force during crouch gait.

نویسندگان

  • Katherine M Steele
  • Matthew S Demers
  • Michael H Schwartz
  • Scott L Delp
چکیده

Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trunk Kinematic Analysis during Gait in Cerebral Palsy Children with Crouch Gait Pattern

Background: Deficits in upper body movement have received little attention during gait in cerebral palsy (CP) children with crouch gait pattern (CGP).Objective: Purpose of this research is to describe the correlation of trunk movement with the excessive knee flexion and ankle kinematic in CP children with CGP.Methods: Gait analysis data from 57 limbs of diplegic CP children with CGP and 26 limb...

متن کامل

The Application of Computer Musculoskeletal Modeling and Simulation to Investigate Compressive Tibiofemoral Force and Muscle Functions in Obese Children

This study aimed to utilize musculoskeletal modelling and simulation to investigate the compressive tibiofemoral force and individual muscle function in obese children. We generated a 3D muscle-driven simulation of eight obese and eight normal-weight boys walking at their self-selected speed. The compressive tibiofemoral force and individual muscle contribution to the support and progression ac...

متن کامل

Crouched posture maximizes ground reaction forces generated by muscles.

Crouch gait decreases walking efficiency due to the increased knee and hip flexion during the stance phase of gait. Crouch gait is generally considered to be disadvantageous for children with cerebral palsy; however, a crouched posture may allow biomechanical advantages that lead some children to adopt a crouch gait. To investigate one possible advantage of crouch gait, a musculoskeletal model ...

متن کامل

Knee joint loading in forward versus backward pedaling: implications for rehabilitation strategies.

OBJECTIVE To use forward dynamic simulations of forward and backward pedaling in order to determine whether backward pedaling offers theoretical advantages over forward pedaling to rehabilitate common knee disorders.DESIGN. A comparison of knee joint loads was performed during forward and backward pedaling.BACKGROUND. Pedaling has been shown to be an effective rehabilitation exercise for a vari...

متن کامل

Muscle contributions to vertical and fore-aft accelerations are altered in subjects with crouch gait.

The goals of this study were to determine if the muscle contributions to vertical and fore-aft acceleration of the mass center differ between crouch gait and unimpaired gait and if these muscle contributions change with crouch severity. Examining muscle contributions to mass center acceleration provides insight into the roles of individual muscles during gait and can provide guidance for treatm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gait & posture

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2012